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Abstract- Based on Biot’s three-dimensional consolidation theory of porous media, analytical solutions for a saturated confined 

aquifer subjected to a constant-flux point sink are presented. In this study, porous medium is assumed to be isotropic, 

homogeneous and compressible. Also, the point sink can be located at an arbitrary depth in the aquifer. The closed-form 

solutions of the displacements and excess pore water pressure for a saturated confined aquifer are obtained by Laplace and 

Finite Fourier Transformation technique using suitable boundary conditions. These types of solutions are applicable to practical 

problems of finite plane strain poroelasticity in wide range of disciplines. 
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1. INTRODUCTION 

In recent years, flow deformation coupling in porous media 

has been more and more drawing our interest. It has been 

extensively applied to various engineering fields, such as 

consolidation of soft soil foundation under loading, land 

subsidence due to subsurface removal, stability of slopes, 

nuclear waste disposal and biological soft tissue 

deformation etc. 

The theory of flow-deformation coupling in porous media 

originated from the research of Biot (1941) on the three 

dimensional consolidation of saturated soft soils under 

loads. Since then, many studies concerning coupled models 

with applications to various fields have been carried out by 

many researchers Gibson (1974), Booker and Carter(1987a, 

b),Selvadurai (2007), Tarn and Lu (1991) and others. In 

their studies, different assumptions or approximations were 

specified, e.g. different constitutive relations, anisotropic or 

isotropic, homogeneous or heterogeneous, saturated or 

unsaturated, and different forms of the effective stress law. 

All the above studies were developed on the classical 

theory of Biot’s consolidation. In the meantime, Bowen 

(1980, 1982) presented the incompressible and 

compressible porous media models with the mixture theory 

which proved reliable with Biot’s consolidation theory. 

Consequently, in the present problem, the flow-

deformation coupling of  poroelastic media has been 

carried out by direct application of Biot’s consolidation 

theory. 

There were a small number of exact solutions to coupled 

flow and deformation within finite two-dimensional porous 

media caused by fluid pumping but the bulk of them are for 

infinite or semi-infinite regions. Biot (1956a, 1956b) 

developed an exact solution of the deformation problem of 

vertical displacement while the upper surface of a semi-

infinite plane domain was subjected to consistent loading 

of a definite width. Furthermore, the analytical solutions of 

axially symmetric plane strain consolidation problems 

under surface loading were derived by McNamee and 

Gibson (1960b). Booker and Carter (1986a, 1986b, and 

1987b) found the steady state and time dependent exact 

solutions of deformation and flow due to constant flux 

point sink rooted in a saturated poroelastic half-space. In 

these solutions, soil properties were assumed to isotropic, 

while the permeability was assumed isotropic or 

transversely isotropic. Chen (2005) derived the steady state 

analytical solutions in a multilayered poroelastic half-space 

and investigated the effects of three kinds of pumping 

patterns and three kinds of boundary conditions upon the 

settlement. However, in practical engineering, the thickness 

of soft soil layer or aquifer is usually limited, and even 

though formation thickness is assumed to be infinite, the 

usual treatment method is to divide it into many thin layers 

according to the relevant profile of the engineering 

geology. Therefore, it is reasonably imperative and 

significant to study the finite two-dimensional problems. 

Bary and Mercer (1999) presented the analytical solution of 

displacement field and pressure field due to a point 

sink/source within a bounded two-dimensional 

incompressible porous media. They are applicable only for 

Dirichlet type boundary conditions of pore-pressure. 

Afterwards, the analytical solution of pore pressure field 

induced by a point sink with Neumann type boundary 

conditions within a bounded two-dimensional 

incompressible porous media were developed by Li and Lu 
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(2011). Accordingly, the focus of the present study is to 

obtain the analytical solution for the finite two-dimensional 

compressible poroelastic media based on the general Biot’s 

consolidation theory. 

In the present paper, we study the plane strain deformation 

of a waterlogged bounded aquifer subjected to a stable 

flux-point sink. The saturated aquifer is assumed to be 

homogeneous, isotropic, infiltrated by a single pore fluid 

following Darcy’s law. The flow and deformation are 

regarded as quasi-static and the tensile stress is positive. 

The governing equations following Biot’s consolidation 

theory have been directly applied to model coupled flow 

and deformation problem subjected to a point sink in the 

finite two-dimensional compressible aquifer. Both the 

displacement and pore-pressure fields in the physical 

domain are obtained using Laplace and Finite Fourier 

integral transforms and their inversions with suitable 

boundary conditions. 

2. FORMULATION OF THE PROBLEM 

The physical model of the problem is shown in figure 1 in 

which a saturated confined aquifer has been considered 

under the influence of a stable-flux point sink. The size of 

aquifer in x-direction is supposed to be much greater than 

the other two directions. As a consequence, strains 

associated with x-direction are much smaller than those in 

y-z cross section. That is, strains allied with x-direction can 

be ignored, and the problem under consideration reduces to 

the problem of plane-strain poroelasticity in y-z cross 

section. 

 

 

 

 

 

 

 

 

The point sink is shown at an arbitrary depth at ),( 00 zy .  

 

2.1 Governing Equations 

As the problem under consideration is of plane-strain 

poroelasticity in y-z plane, 

setting 00 

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andxzxyxx  , the constitutive 

behaviour of poroelastic model can be described with the 

help of following relations:: 
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Strain-Displacement Relations 

The strains ij  are related to the displacements iu  in the 

following manner: 
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Displacement-Pore pressure equation 

If Hooke’s law given by equations (1) - (3) and equations 

of equilibrium given by (5) - (6) are combined, in the 
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The equation for the pore-pressure field is 

          Fig. 1. Physical Model of the problem 
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In all the above equations from (1) - (9), the symbols v, w 

denote the solid displacement components in y and z 

coordinate directions respectively.  
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E
G  is the shear modulus, E is the Young’s 

modulus and  is the Poisson’s ratio.  
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bulk volumetric strain. 
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E
Kb  is the bulk modulus of porous medium, 

sK  

is the bulk modulus of solid grains, p is the pore pressure 

and Q is the source intensity per unit bulk volume( positive 

for source and negative for sink). 
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absolute permeability and 
f  the viscosity of pore fluid.  
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and 
tC  is known as bulk compressibility of pore fluid. 

Re-arranging equations (7) and (8) and then dividing by G, 

we get 
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where 
21

1


n  

Accordingly, the governing equations for flow and 

deformation coupling within a bounded aquifer are given 

by Equations (9), (10) and (11).  

2.2 Initial and Boundary Conditions  

Displacement field boundary conditions 

bzandzon  0  and ayandyon  0  are 

given as follows: 
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Pore-pressure boundary conditions 
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It should be noted that the displacement field boundary 

conditions in the form (12) are particularly preferred which 

are to go with the following Finite Fourier Transformations 

and make simpler the formulation procedure. 

The displacement and pore-pressure field initial 

conditions at 0t  
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3. ANALYTICAL SOLUTIONS 

The Laplace transform, the finite cosine transform and 

finite sine transform, respectively, of a function f  are 

defined as follows: 
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The governing partial differential equations (9), (10) and 

(11) can be reduced to the following differential equations 

by applying      11.,10.,9. EqCEqSEqS zrzrzr  
using 

boundary conditions given by (12) - (14). 
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Now applying 
ymymym SandCS ,  on first, second and third 

equation, respectively, of (17), we obtain the following set 

of differential equations with the help of boundary 

conditions given by (12)-(14). 
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Further applying Laplace transformation w.r.t. time 

variable t and using initial conditions given by (15), the 

differential equations in (18) are reduced to following 

algebraic equations: 
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Solving the equations w.r.t. ),,(),,(),,,( srmpandsrmwsrmv , 
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As we are considering the case of constant-flux point sink, 

therefore  
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Consequently, the poroelastic analytical solutions in the 

physical domain with a stable-flux point sink given by 

taking double inversion to equations (23) are as follows: 
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where ),,(ˆ),,(ˆ),,,(ˆ trmpandtrmwtrmv are given by equation 

(23). 

4. RESULTS  

For the sake of numerical calculations three non-

dimensional quantities are defined as  
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Figure 2 shows the profile of non-dimensional vertical 

displacement 
*w  at the centre (y=0.5a, z=b) of the upper 

surface against the non-dimensional time
*t . It is observed 

that transient response of 
*w  at the centre (y=0.5a, z=b) 

exhibits the trends of exponential decaying. In addition to 

it, 
*w  tends to be steady when 

*t  becomes sufficiently 

large (around 6.1* t ). This is due to the dissipation 

effect occurring in the consolidation process. 

Figure 3 shows the long term distribution of non-

dimensional vertical displacement 
*w  on the upper surface 

against the of non-dimensional horizontal coordinate 
*y  It 

is observed that the curve of 
*w  on the upper surface (z=b) 

versus 
*y presents the trend of complete symmetric funnel 

type distribution with respect to 5.0* y . This is due to 

the central location of the point sink and the symmetry of 

boundary conditions. 

5. DISCUSSION AND CONCLUSIONS 

This paper presents an exact solution for the transient two-

dimensional flow and deformation of saturated confined 

aquifer. The assumptions of an isotropic, homogeneous and 

compressible aquifer are taken into consideration in the 

present study. The general theory of Biot’s consolidation 

has been used to govern the fluid-solid interaction. First 

type (Dirichlet) type boundary conditions of fluid flux and 

the corresponding suitable displacement field boundary 

conditions are considered. In the derivation, appropriate 

finite sine and cosine transforms and Laplace transforms 

are specifically chosen to simplify the transforms of the 

governing equations. The proposed analytical solution can 

help us obtain in-depth insights into time-dependent 

mechanical behaviour due to fluid extraction within finite 

two-dimensional porous media. Furthermore, it can also be 

of huge importance to calibrate numerical solutions in 

plane strain poroelasticity and to formulate appropriate 

industry norms and principles.
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